113 research outputs found

    Dynamin recruitment by clathrin coats: a physical step?

    Get PDF
    Recent structural findings have shown that dynamin, a cytosol protein playing a key-role in clathrin-mediated endocytosis, inserts partly within the lipid bilayer and tends to self-assemble around lipid tubules. Taking into account these observations, we make the hypothesis that individual membrane inserted dynamins imprint a local cylindrical curvature to the membrane. This imprint may give rise to long-range mechanical forces mediated by the elasticity of the membrane. Calculating the resulting many-body interaction between a collection of inserted dynamins and a membrane bud, we find a regime in which the dynamins are elastically recruited by the bud to form a collar around its neck, which is reminiscent of the actual process preempting vesicle scission. This physical mechanism might therefore be implied in the recruitment of dynamins by clathrin coats.Comment: 11 pages, 6 figures, to appear in C.R.A.S. ser II

    Determination of the interactions in confined macroscopic Wigner islands: theory and experiments

    Full text link
    Macroscopic Wigner islands present an interesting complementary approach to explore the properties of two-dimensional confined particles systems. In this work, we characterize theoretically and experimentally the interaction between their basic components, viz., conducting spheres lying on the bottom electrode of a plane condenser. We show that the interaction energy can be approximately described by a decaying exponential as well as by a modified Bessel function of the second kind. In particular, this implies that the interactions in this system, whose characteristics are easily controllable, are the same as those between vortices in type-II superconductors.Comment: 8 pages, 8 figure

    Modeling planar degenerate wetting and anchoring in nematic liquid crystals

    Get PDF
    We propose a simple surface potential favoring the planar degenerate anchoring of nematic liquid crystals, i.e., the tendency of the molecules to align parallel to one another along any direction parallel to the surface. We show that, at lowest order in the tensorial Landau-de Gennes order-parameter, fourth-order terms must be included. We analyze the anchoring and wetting properties of this surface potential. In the nematic phase, we find the desired degenerate planar anchoring, with positive scalar order-parameter and some surface biaxiality. In the isotropic phase, we find, in agreement with experiments, that the wetting layer may exhibit a uniaxial ordering with negative scalar order-parameter. For large enough anchoring strength, this negative ordering transits towards the planar degenerate state

    Interaction and flocculation of spherical colloids wetted by a surface-induced corona of paranematic order

    Full text link
    Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are wetted by a surface-induced corona of paranematic order. Such coronas give rise to pronounced two-particle interactions. In this article, we report details on the analytical and numerical study of these interactions published recently [Phys. Rev. Lett. 86, 3915 (2001)]. We especially demonstrate how for large particle separations the asymptotic form of a Yukawa potential arises. We show that the Yukawa potential is a surprisingly good description for the two-particle interactions down to distances of the order of the nematic coherence length. Based on this fact, we extend earlier studies on a temperature induced flocculation transition in electrostatically stabilized colloidal dispersions [Phys. Rev. E 61, 2831 (2000)]. We employ the Yukawa potential to establish a flocculation diagram for a much larger range of the electrostatic parameters, namely the surface charge density and the Debye screening length. As a new feature, a kinetically stabilized dispersion close to the nematic-isotropic phase transition is found.Comment: Revtex v4.0, 16 pages, 12 Postscript figures. Accepted for publication in Phys. Rev.

    Nematic-Wetted Colloids in the Isotropic Phase: Pairwise Interaction, Biaxiality and Defects

    Full text link
    We calculate the interaction between two spherical colloidal particles embedded in the isotropic phase of a nematogenic liquid. The surface of the particles induces wetting nematic coronas that mediate an elastic interaction. In the weak wetting regime, we obtain exact results for the interaction energy and the texture, showing that defects and biaxiality arise, although they are not topologically required. We evidence rich behaviors, including the possibility of reversible colloidal aggregation and dispersion. Complex anisotropic self-assembled phases might be formed in dense suspensions.Comment: 4 pages, 6 figure

    Theory of monolayers with boundaries: Exact results and Perturbative analysis

    Full text link
    Domains and bubbles in tilted phases of Langmuir monolayers contain a class of textures knows as boojums. The boundaries of such domains and bubbles may display either cusp-like features or indentations. We derive analytic expressions for the textures within domains and surrounding bubbles, and for the shapes of the boundaries of these regions. The derivation is perturbative in the deviation of the bounding curve from a circle. This method is not expected to be accurate when the boundary suffers large distortions, but it does provide important clues with regard to the influence of various energetic terms on the order-parameter texture and the shape of the domain or bubble bounding curve. We also look into the effects of thermal fluctuations, which include a sample-size-dependent effective line tension.Comment: replaced with published version, 21 pages, 16 figures include

    Numerical study of surface-induced reorientation and smectic layering in a nematic liquid crystal

    Full text link
    Surface-induced profiles of both nematic and smectic order parameters in a nematic liquid crystal, ranging from an orienting substrate to "infinity", were evaluated numerically on base of an extended Landau theory. In order to obtain a smooth behavior of the solutions at "infinity" a boundary energy functional was derived by linearizing the Landau energy around its equilibrium solutions. We find that the intrinsic wave number of the smectic structure, which plays the role of a coupling between nematic and smectic order, strongly influences the director reorientation. Whereas the smectic order is rapidly decaying when moving away from the surface, the uniaxial nematic order parameter shows an oscillatory behavior close to the substrate, accompanied by a non-zero local biaxiality.Comment: LaTeX, 17 pages, with 4 postscript figure

    Effective index of refraction, optical rotation, and circular dichroism in isotropic chiral liquid crystals

    Get PDF
    This paper concerns optical properties of the isotropic phase above the isotropic-cholesteric transition and of the blue phase BP III. We introduce an effective index, which describes spatial dispersion effects such as optical rotation, circular dichroism, and the modification of the average index due to the fluctuations. We derive the wavelength dependance of these spatial dispersion effects quite generally without relying on an expansion in powers of the chirality and without assuming that the pitch of the cholesteric PP is much shorter than the wavelength of the light λ\lambda, an approximation which has been made in previous studies of this problem. The theoretical predictions are supported by comparing them with experimental spectra of the optical activity in the BP III phase.Comment: 15 pages and 7 figures. Submitted to PR

    Boojums and the Shapes of Domains in Monolayer Films

    Full text link
    Domains in Langmuir monolayers support a texture that is the two-dimensional version of the feature known as a boojum. Such a texture has a quantifiable effect on the shape of the domain with which it is associated. The most noticeable consequence is a cusp-like feature on the domain boundary. We report the results of an experimental and theoretical investigation of the shape of a domain in a Langmuir monolayer. A further aspect of the investigation is the study of the shape of a ``bubble'' of gas-like phase in such a monolayer. This structure supports a texture having the form of an inverse boojum. The distortion of a bubble resulting from this texture is also studied. The correspondence between theory and experiment, while not perfect, indicates that a qualitative understanding of the relationship between textures and domain shapes has been achieved.Comment: replaced with published version, 10 pages, 13 figures include
    corecore